2025年学术讲座预告(No.40)聊城大学刘兴副教授做报告
时间:2025-10-13 编辑:lixy 点击:
报告题目:Numerical threshold stability of a nonlinear age-structured reaction diffusion heroin transmission model
报告摘要:This talk focuses on the numerical threshold stability of a nonlinear age-space structured heroin transmission model. A semi-discrete system is established by spatial domain discretization of the original nonlinear age-space structured model. A threshold value is proposed in the stability analysis of the semi-discrete system and named as the numerical basic reproduction number. In addition to its role in numerical threshold stability analysis, the numerical basic reproduction number can preserve the qualitative properties of the exact basic reproduction number and converges to the latter as step sizes vanish. A fully discrete system is established via time discretization of the semi-discrete system, in which an implicit-explicit technique is implemented to ensure the preservation of biological meanings (such as positivity) without CFL restriction. Some numerical experiments are presented at the end to confirm the conclusions and explore the final state.
报告人简介:刘兴,聊城大学数学科学学院副教授,硕士生导师,入选聊城大学光岳系列人才计划,主持或参与国家自然科学基金3项,山东省自然科学基金4项,研究领域为反应扩散微分方程、延迟微分方程及脉冲微分方程的数值分析,在Applied Numerical Mathematics、Journal of Computational and Applied Mathematics、Computers & Mathematics with Applications等TOP期刊发表SCi论文20余篇。
报告时间:2025年10月14日(星期二)13:00
报告地点: 线上腾讯会议:713-772-689
主办单位:湖北民族大学数学与统计学院
联系人:王连文
欢迎广大师生参加!
时间:2025-10-13 编辑:lixy 点击:
报告题目:Numerical threshold stability of a nonlinear age-structured reaction diffusion heroin transmission model
报告摘要:This talk focuses on the numerical threshold stability of a nonlinear age-space structured heroin transmission model. A semi-discrete system is established by spatial domain discretization of the original nonlinear age-space structured model. A threshold value is proposed in the stability analysis of the semi-discrete system and named as the numerical basic reproduction number. In addition to its role in numerical threshold stability analysis, the numerical basic reproduction number can preserve the qualitative properties of the exact basic reproduction number and converges to the latter as step sizes vanish. A fully discrete system is established via time discretization of the semi-discrete system, in which an implicit-explicit technique is implemented to ensure the preservation of biological meanings (such as positivity) without CFL restriction. Some numerical experiments are presented at the end to confirm the conclusions and explore the final state.
报告人简介:刘兴,聊城大学数学科学学院副教授,硕士生导师,入选聊城大学光岳系列人才计划,主持或参与国家自然科学基金3项,山东省自然科学基金4项,研究领域为反应扩散微分方程、延迟微分方程及脉冲微分方程的数值分析,在Applied Numerical Mathematics、Journal of Computational and Applied Mathematics、Computers & Mathematics with Applications等TOP期刊发表SCi论文20余篇。
报告时间:2025年10月14日(星期二)13:00
报告地点: 线上腾讯会议:713-772-689
主办单位:湖北民族大学数学与统计学院
联系人:王连文
欢迎广大师生参加!